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ABSTRACT

A technique for improving the numerical predictions of turbulent flows

with the effect of streamline curvature is developed. Separated flows, the flow

in a curved duct, and swirling flows are examples of flow fields where

streamline curvature plays a dominant role. A comprehensive literature review

on the effect of streamline curvature was conducted in the present study. New

algebraic formulations for the eddy viscosity _t t incorporating the k-e

turbulence model are proposed to account for various effects of streamline

curvature. The loci of flow reversal of the separated flows over various

backward-facing steps are employed to test the capability of the proposed

turbulence model in capturing the_ effect of local curvature. The inclusion of

the effect of longitudinal curvature in the proposed turbulence model is

validated by predicting the distributions of the static pressure coefficients in an

S-bend duct and in 180 ° turn-around ducts. The proposed turbulence model

embedded with transverse curvature modification is substantiated by predicting

the decay of the axial velocities in the confined swirling flows. The numerical

predictions of different curvature effects by the proposed turbulence models are

also reported.
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CHAPTER I

INTRODUCTION

The tremendous improvement of computer capabilities in the past few

years, including memory and speed, enables accurate numerical predictions of

turbulent flows. Due to the closure problem of the governing equations for

turbulent flows, numerous turbulence models have been proposed. The eddy-

viscosity type of turbulence closure modeling has demonstrated a variety of

good numerical predictions both qualitatively and quantitatively. Among them,

the k-e model is the most widely employed isotropic two-equation model. This

model has been extensively applied to different turbulent flow problems.

However, the standard k-e model appears to be insufficient in predicting the

complex turbulent shear layers, such as flows subjected to curvature and

rotation.

Flows with streamline curvature are particularly of interest in engineering

due to their frequent presence in real life applications. There are several types

of streamline curvature problems which may occur in the flow field. The

separated flows would be considered to involve local curvature; flows in curved



ducts can be classified asa longitudinal curvature problem; and swirling flows

typify the transversecurvature. The appearanceof streamline curvature could

change the structure of turbulent flow fields drastically. For example,

turbulence intensity is enhancedwith the application of concave curvature,

while convex curvature inhibits the turbulent mixing. The change of turbulent

structure will influence the mean flow field and vice versa. Consequently, any

models do not include the effect streamline curvature will fail when streamline

curvature occurs.

Modifications to turbulence modeling are therefore necessaryto account

for the effects of various streamline curvature. The ad hoc changeof modeling

constants,however,to fit experimental measurementsis not desirable, as it lacks

physical rationale and generality. A large increase in computing time is not

feasible for practical applications either. In the present investigation, new

formulations for the eddy viscosity with the effects of different streamline

curvature areproposed. Since the transport equations of the Reynolds stresses

have a better description of the curvature effects, algebraic forms of the

equations, approximated from the Reynolds-stress model, are essential. By

extracting the extra strain rate and the main strain rate for the flow fields with

different streamline curvature environments, new algebraic expressions for the

eddy viscosity are derived from the algebraic Reynolds-stress model. In the
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proposededdy-viscosity formulations, the flux Richardson number R t plays an

important role as it dictates the effects of various streamline curvature on the

turbulence structure through the amplification or diminution of the eddy

viscosity. Different coordinate systems are employed for various effects of

streamline curvature in accordance with geometrical flow characteristics.

The implemented eddy viscosity will be incorporated with the k-e model

to predict the effects of streamline curvature on the turbulent flow field. A

Navier-Stokes flow solver embedded with the standard k-e model is employed.

A second-order finite differencing scheme for the temporal and spatial

discretizations, incorporating a quasi-damping scheme which is deduced from

second-order upwind difference concept, is adopted for the convection terms.

The proposed models will be verified by comparing computationally predicted

results with turbulent flows subjected to different streamline curvature effects.

The examples for model verification are a) the flow over a backward-facing

step, b) the flow in a curved duct, and c) swirling flows. The numerical

computations are performed on the Cray X-MP supercomputer at NASA-Lewis

Research Center.
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CHAPTER II

REVIEW OF LITERATURE

During the last two decades, turbulence modeling has become the most

productive, controversial, and rapidly improving subject for researchers in the

computational fluid dynamics field. It started with simple boundary layer flows

on a flat plate, and today numerous successes of the predictions on simple shear

layer flows have been reported. However, the numerical computation of

complex turbulent flows--such as three-dimensional flows, flows subjected to

curvature and rotation, separated flows and shock boundary layer interaction--is

still being investigated.

The drastic change of flow characteristics due to the presence of the

streamline curvature has been demonstrated by many researchers [1]-[4] based

on classical laminar boundary layer theory study. The objective of the present

research work is to explore the effects of streamline curvature and swirl on

turbulent flows, which effects are much more complicated than their laminar

counterparts. A review of literature is therefore conducted in two

complementary ways--by 1) examining the experimental works to help
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understandthe physics of curved flows, and 2) studying and evaluating both the

theoretical research and numerical techniques--to implement the turbulence

modeling with the inclusion of curvature and swirl effect. The detailed

information of the literature review in these two categories, and their

summaries, are tabulated in Table A.1 (for experimental work) and Table A.2

(for theoretical and numerical work).

2.1 Experimental Investigations

A variety of experimental investigations have been conducted in the last

few decades. Bradshaw and his co-workers [5]-[10] conducted a series of

experiments on convex surfaces, concave surfaces and curved ducts. They

found that the turbulence intensity is reduced by the application of convex

curvature which indicates a stabilizing effect, while longitudinal vortices are

induced by the application of the concave curvature which has a destabilizing

effect that enhances the turbulence mixing. Curved shear layers exhibited non-

equilibrium behavior and required different formulation for the stabilizing and

destabilizing effects. The rapid response of boundary layers to the presence of

the convex curvature, as well as a fairly rapid recovery when the curvature is

removed, has been experimentally demonstrated. Hence, Bradshaw et. al.

suggested that the effect of convex curvature be modeled in Reynolds-stress
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equations,at least partly as dependenton the rapid part of the pressure-strain

term in the Reynolds-stressequations. It was further proposedthat the apparent

mixing length, increased due to the concave curvature, be modeled roughly

proportional to the Richardson number Ri, which is

2( Uo/R )
Ri = (2.1)

OUo/0n

where R is the radius of curvature, n is the normal distance away from the wall,

and Uo is the longitudinal velocity. It was noted by Smits, Young and

Bradshaw [7] that the ratio of shear stress to kinetic energy is increased by the

concave curvature. The increment of Reynolds stress is caused by the increase

in the transverse production term in the Reynolds stress equation as the

curvature occurs. Experimental data also revealed that flows recover more

rapidly on the convex surface than on the concave surface as the curvature

disappears.

Gillis and Johnston [11] demonstrated the characteristics of fiat-plate

boundary layers recovering from a sustained convex longitudinal curvature.

Since the radial pressure gradient acts to destroy the size of the largest eddies,

the radius of curvature is proposed to be a scaling parameter. The experimental

• results exhibited a slow recovery of Reynolds stresses from convex curvature
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effect, which is contradictory to Bradshaw's results. This is attributed to the

stabilizing effect which permanently attenuatesthe turbulence length-scale and

reduces the effects of the upstream condition. However, the near-wall layers

are not influenced very much by the curvature.

Streamline energy spectra for turbulent duct flow with small streamline

curvature has been examined by Hunt and Joubert [12] in terms of a

Townsend-type two-component turbulence model. Their result indicated that

the flow was primarily affected by a direct change in turbulent shear stress

through a conservative reorientation of the turbulence intensity components.

Ramaprian and Shivaprasad [13] have performed extensive

measurementsof the surfacecurvature effects on turbulent energy balance and

triple correlations. Turbulent energy production rate is reported to be

significantly reducedby convex curvature and confined to a region very close

to the wall; however, it is only slightly enhanced by concave curvature.

Diffusion of both momentum and turbulent kinetic energy is found to be

suppressedby convex curvature and strengthenedby concave curvature.

Effects of convex and concave surface curvature with artificially

controlled constantpressurewere testedby So and Meilor [14]-[15]. Reported

test results are similar for curvature effects with and without adversepressure

gradients. Turbulent energy and its production rate, normalized by U_,appear

7



to be similar to the flat-plate data in the near-wall region; hence,no influence

on the flow by surface curvature near the wall is concluded. A coherent

structure of G_Srtlervortices is generatedat the onsetof concave curvature and

then breaks up as flow moves downstream, due to the increaseof turbulence

level.

Tani [16] performed an experimental test on concave-wall flow. He

compared the datawith Gtirtler's small-disturbance theory becauselongitudinal

vortices induced by concavecurvature will intensify the growth of disturbances

into turbulence in a boundary layer. Measureddata reveal a spanwisevariation

having a definite wave number whether the boundary layer is laminar or

turbulent, but the determination of the wave number is unavailable in Tani's

paper.

After inspection of individual surface curvature effects, curved duct

flows, in which there is a combination of both curvature effects, areexamined.

First, an experimental study on the development of steady, laminar,

incompressible flow in a curved pipe was conducted by Agrawal, Talbot and

Gong [17]. The data indicate that at the vicinity of the curved pipe inlet, the

inviscid axial velocity profile transits from a uniform distribution to a vortex-

type distribution.
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White [18] also investigated wall shear stress in a coiled pipe with

various inlet Reynolds number. The results show that the friction force

increaseswith the Dean number D,, defined as

i r (2.2)D = Rc ._.

with r is the radius of the pipe.

Strong secondary flows are discovered in S-shaped ducts with square

cross section by Taylor, Whitelaw and Yianneskis [19]. In the first bend,

secondary flows are larger in the laminar flow case than in the turbulent flow

casedue to larger inlet boundary layer thickness in laminar case. Taylor et al.

reported that secondaryflows reachtheir maximum values at the exit of the first

bend, while the secondbend producesthe secondaryflow effect in the opposite

direction.

Humphrey, Whitelaw and Yee [20] reportedLaser-Doppler anemometer

measurementof the mean velocities and Reynolds stressesin a 90°-bend duct

with a squarecross section. The locus of maximum velocity in laminar flow

is shown to move more rapidly toward the outer wall than that in the turbulent

flow. Low turbulence intensity and low level of anisotropy are exhibited at the

wall with convex curvature, whereashigh turbulence intensity and high level
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of anisotropy are introduced at the wall with concave curvature. Some

geometry with lower Reynolds number (laminar flow) was tested by

Humphrey, Taylor and Whitelaw [29], and it appearsthat the secondary flow

is already established at the entrance plane and persists downstream more than

10 hydraulic diameters.

Turbulent flows in a 180°-bend pipe and in a 450/45 ° S-bend pipe were

investigated by Row [21]. In the 180°-bend pipe, it is indicated that the

secondary flows increase to a maximum and then decrease to a steady value.

The flow in an S-bend pipe demonstrates that the secondary flows cause a

complete interchange of fluids near the wall region and in the central core.

Humphrey and Chang [22] explored the turbulent flow field in a 180 °-

bend square duct through L.D.V. measurements. According to the experimental

result, they concluded that in the downstream straight section to a curved duct,

turbulence diffusion and redistribution processes force the flow to erase all

memory of the force imbalance acting on the flow in bend. However, a very

weak secondary motion persists in the downstream straight section because of

differences in the cross-stream gradients of the Reynolds stresses.

Based on the present review, it is found that there are few experimental

studies on two-dimensional turbulent flows in S-bend ducts, and the work by

Butz [23] is one of them. Due to strong secondary flows in S-shaped ducts,
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large aspectratio is required to eliminate the lateral velocity component. Mean

velocities and pressurerecovery coefficients were measured in Butz's work.

Brinich and Graham [24] investigated the turbulent flow and heat

transfer in a two-dimensional 210°-turning curved channel having an aspect

ratio of 6, a radius ratio of 0.96, and adiabatic and heated walls; and operating

at three different inlet velocities. The results show that at the start of the

curved section an abrupt increase in pressureoccurred for both the inner and

outer walls. This is due to the force required to change the stream direction

from rectilinear to curved flow. Another sudden pressure rise appearsat 75°

station because of a change in the longitudinal vortex development.

2.2 Theoretical and Numerical Methods

Since the early parts of this century, researchers have realized the

importance and complications associated with curved flows. Some researchers,

such as Hawthorne [3] and Rowe [21], have tried to solve the problem through

a quasi-inviscid theory. Meanwhile, laminar boundary layer theory incorporated

with various techniques was employed more often in the curved flow field: for

example, Tani [16] used small disturbance theory to examine the instability of

the longitudinal vortices; White [18] proposed an empirical algebraic solution

for the resistance coefficient due to the curvature effect; Agrawal, Talbot and
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Gong [17] adopted an asymptotic expansion correction (developed by Singh

[25]) to the governing equations of motion to compare with their experimental

measurements;Stewart, Cebeci and Chang [26] obtained an approximate

algebraic formulation by using a series expansion for three mean velocity

components; and a similar expansion technique was employed by van Dyke

[27]. Humphrey [28] and his co-workers [29] tried to use the finite

difference method to predict the flow field. Although all the above methods

have the advantage of simplicity and less computing time, none of them can

capture the characteristics of curved flows very well, especially when the

curvature is large. This is mainly because the mechanism of turbulence mixing

does not exist in these proposed theories, and hence the amplification and

attenuation of turbulence could not interact with mean flow field. In the

remaining part of this chapter, we will concentrate on the turbulence modeling

and its theoretical development.

Bradshaw [30] performed a very extensive review of streamline

curvature effects generated by surface curvature, swirling flows, rotating ducts,

and/or spinning pipes. He also provided a method of distinguishing "simple"

shear layers from "complex" shear layers. A simple shear layer is defined as

one where the simple shear, OU/Oy, is so much larger than any other rates of

12



strain that the direct effects of the latter on turbulence are negligible. Complex

shear layers are recognized as perturbations of simple shear layers by the

imposition of extra rates of strain or body forces, or by the interaction with

other shear layers. Bradshaw [30]-[31] also deduced some characteristic

parametersfor flows with streamlinecurvature by drawing an analogy between

meteorological flows, such asbuoyancy effect, and curved-flow fields, suchas

radial pressure gradient. He proposed a correction to the apparent mixing

length with small curvature effects basedon the Monin-Oboukhovformula

l
-- -- 1 - 13Ri (2.3)
l0

where 13is a positive empirical constant of order 10, and lo is the length scale

for zero curvature flows.

A critical evaluation of various turbulence models performed by

Nallasamy [32] reveals that the first generation turbulence modeling techniques

developed based on simple shear-layer flows can no longer predict complex

turbulent flows. Lakshminarayana [33] recently conducted a fairly thorough

review of turbulence modeling techniques for complex turbulent shear layers,

such as flows subjected to curvature and body rotation, separated flows, and

vortex flows. The algebraic eddy viscosity and the two-equation models, with

13



constant value of C_,,are concluded to be inadequate for the prediction of

complex shearlayers. Lakshminarayanarecommendedthat aproper expression

for C_, incorporated with a two-equation model, be used for two-dimensional

flows with separation, curvature, or rotation. It is suggested that Reynolds

stress models be employed for cases with very severe extra strains, large

separation, curvature, or rotation effects, becauseof the large anisotropy.

In the following review, papers will

sequence of zero-equation (algebraic stress)

be summarized based on the

models, two-equation models,

modified two-equation models, and Reynolds stressmodels.

Hunt and Joubert [12] employed the length-scale model in equation

(2.3), proposed by Bradshaw [30], to calculate a two-dimensional curved duct.

No detailed comparison between experimental data and numerical prediction

was reported.

Towne and his co-workers [34]-[37] computed some curved-duct flows

by using a parabolized Navier-Stokes (PNS) solver with a two-layer eddy-

viscosity turbulence model embedded in it. In the outer region, the turbulence

model of Cebeci and Smith [38] is used, while in the inner region either the

model of Cebeci and Smith [38] or that of McDonald and Camarata [39] is

adopted. In spite of less computing time required for the PNS solver, the

streamwise marching technique has its own limitation (i.e., viscous flows with

14



no or small separation),while streamlinecurvature doesinclude flow separation

effect. Numerical predictions of turbulent casesare shown to be less accurate

than thoseof laminar flows becauseof the failure of the two-layer turbulence

model in recovering the effect of extra rate of strain.

The Baldwin-Lomax [40] two-layer eddy-viscosity model was testedby

Loeffler, Jr. [41] by applying it to an S-shapeddiffuser. With the Beam-

Warming [42] implicit scheme embedded, a large separation zone was

predicted; but the numerical resultswere not validated by comparing them with

experimental data.

A simple mixing length model, in which the turbulent stress is

proportional to the local strain rate of the mean flow, was used by Anderson

[43] to computeduct flows with streamlinecurvature and streamlinedivergence.

In the free stream, the length scale is selectedto be the duct height, while van

Driest's [44] model is employed at the near-wall region. Detailed comparisons

with measureddata are not available in the Ref. [43].

lrwing and Smith [45] modified the Reynolds-stressmodel proposed by

Launder, Reeceand Rodi [46], with the assumption of local isotropy as well

as local equilibrium, and obtainedalgebraic equations for the Reynolds stresses.

The extra Reynolds stressproduction term is included to calculate the effects

15



of streamline curvature, according to Irwing and Smith's observation that

curvature effects on the Reynolds stresses are quite large.

Gibson [47] introduced an explicit form for the length-scale function,

where the influence of the wall on the fluctuating pressure field is modeled to

account for the curvature effects. It was suggested in Ref. [47] that curvature

effects can be included by the relatively small production terms appearing in

each individual Reynolds-stress equation.

An algebraic turbulence velocity scale for flows with curvature was

developed by So [48]. The approximation was made based on the Reynolds-

stress equations, in which the pressure-strain term is modeled by Meilor and

Herring [49], with the assumption of local isotropy and local equilibrium.

With the aid of two-dimensional boundary layer approximation, the velocity

scale is derived to be a function of Richardson number Ri.

Two-equation models probably are the most widely used models for

complex turbulent flows. Chang, Han and

standard k-e model to a 90°-bend duct with

Humphrey [50] applied the

square cross section. The

discrepancies exhibited the failure of the standard k-e model to account for

large-scale anisotropy in the tlow. The standard k-e model in conjunction with

a parabolized scheme was employed both by Patankar, Pratap and Spalding

[51] and by Pratap and Spalding [52] to compute curved ducts and pipes.
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Numerical predictions appearto underestimatethe strength of secondary flows.

Two suggestions were then made to modify the turbulence modeling for

complex turbulent flows: 1) solving Reynolds stress equations, and 2)

implementing the eddy viscosity based on approximate algebraic Reynolds-

stress equations.

Murthy and Lakshminarayana [53] compared the Baldwin-Lomax

eddy-viscosity model with the standard k-e model, in a curved duct,

incorporating in both models a space-marching, non-iterative algorithm.

Although the standard k-e model is found to be superior to the eddy-viscosity

model, neither model can produce quantitative agreement with the experimental

measurements.

A general algebraic expression for C_ was deduced by Pourahmadi and

Humphrey [54] to modify the k-e model to account for curvature effects. A

new eddy viscosity was obtained by the combination of Bradshaw's length-scale

model in equation (2.3), and a functional C_, which can be written as

3a la (2.4)F( ) "- C_ +alC_,+a zC_, +a 3 = 0

where a I, a2, a3 = al, a 2, a3(P,./e, Uo/r, OUi/0Xj). Santi [55] applied both this

model and the standard k-e model to a 180 ° turn-around duct, with uniform and

non-uniform inlet flow conditions, and compared the results. Based on various
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computational results, Santi criticized Pourahmadi and Humphrey's model for

an error in finding the root of the F(_/C_) equation (Eq. 2.4) and for additional

difficulties which occur in specifying a selection criterion for regions with

multiple roots.

Launder, Priddin and Sharma [56] proposed that C_ and C_2 be

functional, and that an extra term be added to the energy dissipation rate (e)

equation to include the effects of curvature. In this model, the modeling

constant C_ can be expressed as

-3.4 (2.5)C_ = C_,exp ( 1 +R t/50)2

where R_ is the turbulent Reynolds number, and C_, = 0.09 is the value of C_ in

the absence of the effects of streamline curvature. Another empirical coefficient

C_2 is modified to be proportional to a turbulent Richardson number Rit (based

on a time scale of the energy-containing eddies) and is defined as

C,'2 = C,2[ 1-0.3exp{-R 2}1 ( 1-C cRi t) (2.6)

o

where Cc is a constant with a value of 0.2, and C,2 is the modeling constant of

the standard k-e model and equal to 1.92. An additional term appears in the

c-equation which is attributed to the curvature correction on the production term
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of the e-equation instead of the decay part. This model was employed by

Sharma [57] and provided reasonably good predictions.

Rodi and Scheuerer [58] also compared this model with Gibson's

algebraic stressmodel (Ref. [47]) in calculating the curved shear layers. The

discrepancy between numerical and experimental results demonstrated the

inadequacyof both models in capturing the curvature effects in general.

An effort to include the anisotropy in the approximate algebraic Reynolds

stress equations was conducted by Galmes and Lakshminarayana [59] in

predicting three-dimensional shear flows over curved rotating bodies. In

addition to using the samemodified C_ formulation as in equation (2.5), they

implemented the production term of the e equation, basedon their analysis, by

modifying the empirical coefficient C_1 to include the rotation effect, as

follows:

C,'1 = C_f, = C,[ 1+0.3( 1-Ri c)exp(-R 2) ] (2.7)

where C,_ is the modeling constantof the standard k-e model with a value of

1.44,and Ricis the Richardsonnumber of rotation. A rather complicated model

was proposed by theseauthors in which a modified k-e model, coupled with a

set of six algebraic Reynolds-stress equations, needs to be solved

simultaneously. In eachof the six algebraic equations, the pressure-strainterm
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asoriginally proposed by Launder, Reeceand Rodi [46] is noted to have been

modified by Galmes and Lakshminarayanaso as to include the anisotropy and

near-wall effects caused by rotation and curvature.

Warfield and Lakshminarayana [60] implemented the algebraic

Reynolds stress model proposed by Rodi [61], to modify the Kolmogorov-

Prandtl eddy-viscosity relation and produce an anisotropic turbulence model to

account for the effect of rotation. Algebraic expressions for a vector form of

C_,which contains four components (C_,_,C_, C_3,and C_4),were derived so

that the Reynolds stresstensorsare not necessarilyaligned with the mean strain

tensor. However, the formulations for the C_ vector are considered to be

relatively complicated.

Naot and Rodi [62] obtained the algebraic equations for the vector

modeling coefficient C_in the k-e model, composedof C_ and C_y,to consider

the anisotropic effect. The algebraic expression was derived from an

approximated algebraic Reynolds-stress model by simplifying the Reynolds-

stressequation proposed by Launder, Reeceand Rodi [46], with the convection

and diffusion terms neglected (i.e., in local equilibrium).

A new eddy-viscosity model for swirling flow, representing a type of

flow with streamline curvature, was developed by Kim and Chung [63]. With

an assumption of weakly swirling flows, an expression for eddy viscosity was

20



derived through Rodi's algebraic stress model [61]. A relatively good

agreementwas displayed by choosing the modeling constant 13equal to 0.25.

Nevertheless,according to Cheng [64], some inconsistency was found in Ref.

[63], and it is not certain that the success of Kim and Chung's model is

attributable to the inclusion of Richardson number or to the ad hoc change of

the empirical coefficient C_.

Wilcox and Chambers [65] demonstrated the prediction of the

streamline curvature effects on turbulent boundary layers by using the e-_

model. It was suggested that the streamline curvature primarily affects the

equation of turbulent mixing energy e, while the equation of turbulent

dissipation rate o3 remains unaffected by the curvature. A curvature correction

term was then added to the e-equation to account for the centrifugal effect.

The Reynolds stress model proposed by Launder, Reece and Rodi [46],

coupled with modeled energy dissipation (e) equation, was used by Gibson and

Rodi [66] to predict a highly curved mixing layer. The Reynolds-stress model

developed for plane flow is considered to have the advantage that neither

modification to the basic closure hypothesis nor changes in the modeling

constants are required to predict strong curvature effects. This method

apparently not only is much more complicated and computing intensive but also
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requiresmore modeling approximation for higher order terms. Some qualitative

agreements with the measured data were reported.

ltah and Lakshminarayana [67] investigated turbulent wake flows

including curvature and rotation effects by using three different turbulence

models: 1) standard k-e model, 2) e/algebraic-stress model, and 3) e/Reynolds-

stress model. Due to poor representation and inadequacy of the production term

of the e-equation for curved flows, different forms of this term in combination

with those three models were tested as well. It seems that the k-e model with

modified production term in the e equation can predict the streamline curvature

effect very well but fails to capture the effect of rotation. It was suggested in

Ref. [67] that the e/Reynolds-stress model or the e/algebraic Reynolds-stress

model be employed to account for the rotation effect.

Lilley [68] demonstrated the turbulent flow prediction results of several

different turbulence models, namely mixing length model, k-k/model, Reynolds

stress model, and algebraic stress model, in turbulent swirling jets. An

analytical formula for the length scale was presented to account for swirling

effect. An extra term was introduced in the kl-equation to include the effect of

rotation, so that as the swirl number increases, kl will be enhanced. Fairly good
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agreementwith measureddatawas shown for the mixing length model and k-k/

model.

2.3 Conclusions

Based on

reached:

1)

2)

3)

the literature survey, the following conclusions may be

Streamline curvature in the plane of the mean shear produces

considerably large changes in higher-order quantities of the turbulence

structure of shear layers: e.g., second order variables--Reynolds stresses,

turbulent kinetic energy, etc.

Turbulent mixing is inhibited by the presence of convex curvature;

hence, the stabilizing effect will attenuate the Reynolds stresses and

turbulent kinetic energy.

Concave curvature has a destabilizing effect which will not only enhance

the turbulence intensity and enlarge the length scale, but also induce the

G/Srtler-type vortex structure, which the extra rates of strain become

significant.
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4)

5)

6)

7)

8)

9)

Streamline curvature effect could be caused by surface curvature,

swirling flows, flow separations, or rotation of the whole system; and we

consider a turbulent flow field with this effect a complex shear flow.

The algebraic eddy-viscosity and the standard two-equation models are

not adequate for the prediction of complex shear layers.

Although it fails to predict the flows with large extra strains, Bradshaw's

buoyancy analogy seems to be the simplest model to calculate the

corrected length scale, through a correlation in which a Richardson

number is involved to include the effect of streamline curvature.

The k-e model, with the aid of modification of modeling constants

(through the algebraic Reynolds-stress equations) or adding new terms

in k- and/or e-equations, appears to be the most plausible approach

regarding model complexity and the computing time.

The k-e model, coupled with a set of algebraic Reynolds-stress

equations, does have a better coverage of the physical characteristics of

extra strains (from the effect of anisotropy); however, it is evident that

more computing time and a more complicated modeling procedure are

required.

Even with a more complicated and time-consuming Reynolds-stress

model, better predictions of curvature effects are not guaranteed.

24



In spite of the great number of turbulence models proposed for curved

or rotating flows, most will show good predictions in only some

particular geometries but will fail predicting others.

For engineering applications, modifications to the turbulence modeling,

allowing greater simplicity and less computing time, are feasible,

desirable, and necessary.
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CHAPTER III

THEORETICAL APPROACH

3.1 Governing Equations

The equations of motion for a steady, incompressible, adiabatic flow of

a Newtonian fluid are based on the following fundamental conservation laws,

and will be expressed in tensor notation for universality [69]. The continuity

equation (conservation of mass) is given by

_0i 0 (3.1)

The momentum equations, or so-called Navier-Stokes equations (conservation

of momentum) are written as

po__x_- - _x_÷ox--;.
(3.2)

where Oi represents the three instantaneous velocity components in X c

coordinate direction, ['is the instantaneous static pressure, p is the density, and

the instantaneous stress tensor _j is given by
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aO i _Oj)i)Xj OX_

(3.3)

where IJ- denotes the coefficient of fluid viscosity.

With the present computer capabilities, we know well the impossibility

of solving the instantaneous Navier-Stokes equations for all the detailed

fluctuating properties of a turbulent flow and with spatial resolution of finest

eddies. Therefore, we can only hope to resolve the time-averaged quantities.

^

By using the Reynolds' decomposition, 0i = Ui + ui and P = P + p, and time-

averaging procedure [70]-[71], we can obtain the system of governing

equations for the time-averaged, steady, incompressible, adiabatic turbulent flow

field, which can be written as

_U.
I

_ =0

_X.
J

(3.4)

puj ggT, axj - p
(3.5)

where Ui and P are time-mean parameters, and u_ and p are fluctuating

components. We note that excluding the last term, puiu----'7.,in equation (3.5) gives

the momentum equations for laminar flows. The term of -pu--_ is found to play
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the same role as the simple Newtonian viscous stresses in a laminar flow,

hence, the fluctuating term is regarded as Reynolds stress or turbulent stress.

For i = j, -pu_j represents turbulent normal stresses, otherwise, the Reynolds'

shear stresses. Since the Reynolds-stress term appears in equation (3.5),

additional equations are needed to solve the system of equations. A transport

equation for the Reynolds stresses can be derived from equation (3.5) by

multiplying it with ui and taking a time average of the resulting equation [38],

[72], i.e.

Cii = Pij + Psij ÷ Dis -eij (3.6)

where

Cij (convection) = U k OX_

Pii (pr°ducti°n) = - m 0Uj __ 0U_U i I1 k -- + Uj U k
_Xk "_k

p
Psij ( pressure-strain ) --

P
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Dij ( diffusion ) -- + L (_jkUi + _ikuj)

P

,, i sipation,"I'
and v is the coefficient of laminar kinematic viscosity, 5jR and 5ik are the

Kronecker delta functions.

For i = j, by defining the turbulent kinetic energy as k = _ u--_./2, i.e.

summing the normal Reynolds stresses, equation (3.6) becomes the transport

equation of turbulent kinetic energy, which is

Ck = P, + Pk + Dk - e (3.7)

where

_k
C k (convecton) -- U k

oa k

c3Ui

P (production) = - _ o_X--._

Pk ( pressure-strain ) -
p _Ui

P OXk
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D k ( diffusion ) "-

_u i _ul
e (dissipation) = v

_X k _X k

and the pressure-strain term Pk is usually neglected on the evidence of measured

turbulent energy balance [72].

It is obvious that every time we take time-averaging to introduce more

equations, the more unknowns (higher-order turbulence quantities) appear in our

system of equations. Turbulence closure modeling is therefore required to

balance the numbers of unknowns and the governing equations.

3.2 Turbulence Modeling

As indicated in equations (3.4) and (3.5), the time-averaged Navier-

Stokes formulation has more unknowns than the number of equations. The

technique to model the new unknown term (0u--_) to close the system of

equations is called turbulence modeling. For the last few decades, numerous

turbulence models have been proposed by researchers for various types of

flows. Detailed discussions and comparisons of various turbulence models are
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described in the review papersby Nallasamy [32] and Lakshminarayana [33].

Despite a great variety of turbulence models which have been proposed, they

can be classified into two categories: a) eddy-viscosity model, and b) Reynolds

stress model. The eddy-viscosity models

Boussinesq's eddy-viscosity concept which

are constructed based on the

probably is the widest-applied

approximation for turbulence modeling, which draws a similarity between

Reynolds stress and viscous stress, and is given by

OU i OUj I 2 k

(3.8)

where I.t, is named eddy viscosity or turbulent viscosity. Various methodologies

have been employed to evaluate the eddy viscosity l.t t. Based on the number

of differential equations, in addition to the time-averaged Navier Stokes

equations, used in each technique, the eddy-viscosity models are categorized as

zero-equation (algebraic), one-equation, two-equation, and multi-scale models.

As mentioned in the review of literature and suggested in Ref. [73], the

standard k-¢ model, a version of two-equation models and proposed by

Launder and Spalding [74], will be employed and implemented in the present

study to predict the effect of streamline curvature because of its extensive
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verification, wide application, and easy modification. A detailed formulation

of the k-e model will be described later on.

In the Reynolds stressmodels, the Reynolds stresstensorsarecomputed

directly by solving the coupled partial differential equations as shown in

equation (3.6), in which higher-order terms appearand need to be modeled. It

is obvious that the Reynolds stress models require not only more computing

time and computer memory because of more differential equations and

unknowns, but also more thorough understanding of turbulence physics to

model thesehigher-order terms. However, the Reynolds stressmodelshave the

advantage of predicting complex turbulent flows such as flows subjected to

separation,rotation and theeffect of streamlinecurvature. Hence,in the present

implementation approach, the essenceof the Reynolds stress models will be

adopted to correct the formulation of the eddy viscosity.

With the aid of Boussinesq's eddy viscosity formulation in equation

(3.8), the mean momentum equation, i.e. equation (3.5), may be written as

 x-C+  x-C

and }h = g + it, is the effective viscosity. By using dimensional analysis, the

eddy viscosity itt can be expressed as
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I.t, - p V, 1 (3.10)

where V t is the turbulence velocity scale, and 1 is the turbulence length scale.

It was postulated by Prandtl and Kolmogorov and later adopted in the standard

k-e model that

k 3/2
l- _ , V,- _- (3.11)

which will lead us to obtain

k 2

I.tt = p C_ -- (3.12)
g

where C_ is an empirical coefficient. In equation (3.12), two more unknowns

are introduced and will require the solution of two partial differential equations

for the turbulent kinetic energy and turbulent dissipation rate. This is why the

k-e model is identified as a two-equation eddy-viscosity model.

In the standard k-e model, the transport equation for turbulent kinetic

energy as shown in equation (3.7) was modeled as

C k = P + D_ - e (3.13)

where
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Ck = Uk _k
c3Xk

and as for the turbulent dissipation rate e, it is expressed as the dependent

variable of a differential conservation equation which is highly empirically

modeled and is given by

/,

3e _ I _9 |_t_ be
Uk

_X k D _X k [_ o" _X k

_tI OUi OUk] OUi+C,_.--_-[_+ OXi OXk (3.14)

which physically represents the convection, diffusion, production and dissipation

of the turbulent dissipation rate e, respectively. In equations (3.12)-(3.14), C_,

ffk, if,, C,1 and C,2 are modeling constants, and some typical values of these

constants in the standard k-e model are recommended by Launder and Spalding

[75] in Table 3.1:
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Table 3.1 The values of modeling constantsin the standard k-e model

Clt

0.09

(3"k

1.0

Czl

1.44

C_2

1.92 1.3

According to equations (3.12)-(3.14), the standard k-e model apparently

does not have the capability to account for the effects of streamline curvature.

The modeling constant C_ in the eddy viscosity formulation, as shown in

equation (3.12), is empirically tuned for the simple shear layer. Meanwhile,

there is no mechanism in the model which can either amplify the turbulent

intensity or eddy viscosity in the presence of concave curvature, or inhibit

turbulent mixing with the application of convex curvature. Therefore, the

expression for eddy viscosity in the standard k-e model is considered to be

inadequate to'account for the streamline curvature effect. It is evident that

modifications to the standard k-e model are necessary to include the curvature

effects. However, the ad hoc changes in modeling constants are not desired due

to lack of physical explication. The implementation to the formulation of the

Reynolds stress should be reasonable and feasible.
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3.3 Implementation Approach

It was suggested by Muck, Hoffmann and Bradshaw [5] that the effects

of curvature be modeled in the Reynolds-stress equations. Lakshminarayana

[33] also indicated that the Reynolds-stress equations can interpret the physical

phenomena very well. As a result, the implementation approach will start with

the Reynolds-stress equations. Unfortunately, more higher-order unknown

turbulent parameters are exhibited in the Reynolds-stress equations. Launder,

Reece and Rodi's [46] Reynolds-stress model is therefore adopted because of

its well validation and wide application, which is given by

Cij = Pii + Psij + Dij - e ij (3.15)

where

i ]

C_j = U k ¢_Xk

c3Ui OU_]

/Psij = -C I._. u_j-Si] 3 3 '
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kIDij- C,o_k _ _ -- + U.jUm --O_Xm + UkUm O_Xm

2 8

and C, is an empirical constant with a value of 0.11. The modeling constants

C, and C 2 are inertial and forced return-to-isotropy constants respectively, where

their values will be discussed later on. It should be noted that in this model,

a local isotropy is assumed, which will be valid as long as the cross flow

(lateral or circumferential velocity) is not very large. Even the system of

equations now is closed, solving these six partial differential equations coupled

with k- and e- equations is still not feasible for today's computer and

engineering applications.

An approximation of the Reynolds-stress model proposed by Rodi [61 ]

is very physics-explicable and economical-- the net transport of Reynolds

stresses uiu---_. is proportional to the net transport of turbulent kinetic energy k

with a factor of u_./k, i.e.

U{uj
Cij -- Dij = _ ( C k - D k )

k
(3.16)
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In this approximation, it is assumed that u_uj/k varies but slowly across the flow

field. By combining equations (3.13) and (3.15) with equation (3.16), an

algebraic expression for ui'--_jis obtained as

where

1 - C 2

P
C1 - 1 +.-.Z

E:

This approximation will be invalid only when u---_j/k change greatly, i.e. D(

u-'_j/k ) / Dt is not negligible, so it is not suitable for the near-wall region.

Although equation (3.17) is in algebraic form, it is difficult to incorporate with

the k-e model because the six Reynolds stress components are coupled. In

order to further simplify this algebraic formulation, the understanding and

analysis of flow characteristics are necessary.

There are three kinds of basic streamline curvature: I) local curvature

such as separation bubbles and flows over an airfoil, 2) longitudinal curvature

such as flows through a curved duct, and 3) lateral curvature such as swirling
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flows. The coordinate system for each flow field is somewhat different, and

also both the main strain rate and the extra strain rate vary in each case.

3.3.1 Local curvature

For flows subjected to local curvature, the streamwise direction basically

does not change much, for example the flow over an airfoil or the separated

flow in a backward-facing step geometry. In this case, the two-dimensional

Cartesian coordinate system is selected. The streamwise direction is defined to

be along the x-coordinate, i.e. i, j, or k = 1, and the transverse direction will be

in y-coordinate as i, j, or k = 2. The velocity components are defined as U =

U1, u = ul in the streamwise direction, and V = U2, v = u2 in the transverse

direction respectively. According to Bradshaw [30], the extra rate of strain is

_V/Ox besides the main strain rate _U/_y for the flows with streamline

curvature in Cartesian coordinates. By keeping terms associated with these two

strain rates, and through some elaborate manipulation, the primary Reynolds

shear stress -_-'_ is obtained as

k2 _U 2 [ P, Rf2+4Rr +I ]
-h--_ = __ , 1 - R t - ¢ (3.18)

where the flux Richardson number Rf is
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Rf = -
_U /_y

The detailed derivation procedure will be described in Appendix B. By

collaborating with the Boussinesq's eddy-viscosity concept as shown in equation

(3.8), an algebraic expression for the eddy viscosity It t can be derived as

k 2 2(_ P R_+4Rf+I 1
ixt = p I-R r-_ (3.19)

e 3 e 1 - Rf J

With the flux Richardson number embedded in the eddy-viscosity formulation,

streamline curvature can influence the eddy viscosity and so the Reynolds stress

directly. It is evident that the flux Richardson number Rt is positive for convex

curvature (stabilizing effect), and so the eddy viscosity is reduced. On the other

hand, concave curvature (destabilizing effect) gives a negative Rr and will

enlarge the eddy viscosity. This modification is therefore qualitatively

consistent with the physics of the problem and conclusions reached from the

experimental studies. The effects of streamline curvature vanish as Rr = 0, and

the eddy viscosity becomes

4O



'2EPl (3.20)

In order to determine two return-to-isotropy modeling constants, C I and

C2, in equation (3.17), the above equation will be matched with the correlation

for the eddy viscosity in the standard k-e model at the free stream condition

where there is no curvature effect and the production rate is equal to local

dissipation rate, i.e. where local equilibrium prevails, and hence

2

= 1
(3.21)

where

1 - C 2
_0-

CI

The values of C1 and C 2 have been determined

researchers such as Launder, Reece and Rodi [46] (C 1

and Launder [76] (C1 = 1.8, C2 = 0.6), Gibson and Younis [77] (C1 = 3, C2 =

0.3), and Gibson and Launder [78] (Ci = 2.2, C 2 = 0.5_5). Kim and Chung [63]

also observed that 1.5 g C, < 1.8, and 0.5 g C 2 < 0.8. However, the variations

of C_ and C 2 are expected not to affect the results substantially, which also will

empirically by several

= 1.5, C2 = 0.4), Gibson
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bedemonstratedin the numerical predictions later on. In the presentmodel, C a

= 1.5 is selected which will yield C 2 = 0.76 from equation (3.21).

3.3.2 Longitudinal curvature

The streamwise direction can change drastically for the flows subjected

to longitudinal curvature, for example the flow in an S-bend duct or any curved

ducts. Consequently, the two-dimensional Cartesian coordinates may not be

suitable in this flow field because the assumption for the extra strain rate is no

longer valid. In this case, the approximation procedure will be performed based

on a two-dimensional streamline coordinate (s,n) system, where s-coordinate is

in streamwise direction as i, j or k = 1, and n-coordinate represents the direction

normal to s-coordinate as i, j or k = 2. The velocity components are designated

as U = Ua and u = u_ in the streamwise direction, and V = U 2 and v = u2 in the

normal direction. The term--U/R is known to represent the extra rate of strain

in the s-n coordinate system in addition to the main rate of strain _U/_n (see

Ref. [30]). By retaining the terms associated with these two strain rates and

following the similar procedure as that in the Cartesian coordinate, the modified

eddy viscosity t.tt can be derived as shown in Appendix C, and hence
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k2 LPrR4R 11
where

(3.22)

R

R:l nl uR R

and R is the radius of surface curvature, n is the normal distance away from the

wall. For convex curvature, the radius R has the same direction as n, so R is

positive; while the radius R is in the opposite direction as n for concave

curvature, hence R is negative.

It is interesting to note that equation (3.22) is exactly the same as

equation (3.19), except the definition of the flux Richardson number Rf is

different. This is very practical for engineering applications which implies no

change of formulation for different coordinate systems. It is easy to recognize

that the eddy viscosity in equation (3.22) will be diminished for convex

curvatures due to the positive radius of surface curvature and flux Richardson

number. The increase of the eddy viscosity of course will be introduced with

the application of concave curvature because of the negative radius of surface

curvature and negative Rf.
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3.3.3 Transverse curvature

Transverse curvature occurs when flows have swirl. The cylindrical

coordinate system, X i = [x, y, 0], will be used with x = X t in longitudinal

(axial) direction, r = X2 in the radial direction, and 0 = X3 in circumferential

direction. The symbols Ui = [U, V, W] and ui = [u, v, w] represent the mean

and fluctuating velocity components in the x, r and 0 direction respectively. It

is to be noted that the additional terms introduced by the swirling component

appear not only in the Reynolds-stress productions but also in the Reynolds-

stress convections, which was proved by Johnson [84], and Humphrey and

Chang [85]. The full Reynolds stress equations are complicated, as shown in

Appendix D, hence some assumptions are necessary in order to simplify the

modified model. Axisymmetric, thin-shear-layer, and weak swirl are therefore

assumed for the proposing model, which lead to _/_0 ---0, _/3r > _/_x, and W/r

_: _gW/_r. The weak swirl approximation is also consistent with the constraint,

isotropic turbulence, of most turbulence models including the k-e model. The

anisotropic effect becomes more important as the swirl increases. With the

above assumptions and following the similar derivation procedure of two

proposed models, the modified eddy viscosity la t can be derived as shown in

Appendix D, and hence
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k2 2_
It, = pmu

e 3
P 1 + 2Rf

c 1 - Rf

(3.23)

where

W aW
2

Rf = r _" (3.24)

arj Car)

It is evident that the flux Richardson number Rf is positive when the

extra rate of strain, W_W/(r_r), is positive, and so the eddy viscosity I.tt is

reduced by this effect, which can be seen from equation (3.23). Whereas, the

enhancement of the eddy viscosity I.tt can be achieved by the introduction of the

negative flux Richardson number, i.e. the extra rate of strain is negative.

Comparing equation (3.23) with equations (3.19) and (3.22), we can easily find

even though the eddy viscosity formulations are different, the effects of the

extra rate of strains, embedded in the flux Richardson numbers, on the eddy

viscosity I.t, are essentially the same.

The computational predictions by these three modified models will be

compared with the experimental measurements, and will be further discussed

in chapter V (Results and Discussions).
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3.3.4 Wall function

As indicated in the literature, [11], [13]-[15]; the near-wall turbulent

structure is not significantly affected by the surface curvature. Hence, the

standard wall function, suggested by Launder and Spalding [75] and used in

TEACH-based program, will be applied in the present research. Detailed

description is explained in Ref. [75] and Ref. [79].
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CHAPTER IV

NUMERICAL METHOD

4.1 Equation Integration

A two-dimensional and a three dimensional Navier-Stokes flow solvers

(FDNS-2D and FDNS-3D) embedded with the k-e model, developed by Y.S.

Chen [80-82], are used to test the proposed model in the present study. The

transport equations of the mean flow and turbulence model are transformed into

the general curvilinear coordinates (_, TI, 4)- The system of coupled

transformed equations is discretized into a set of linearized algebraic equations.

In the discretization process, several techniques are employed to stabilize the

numerical integration and maintain the same order of accuracy.

1) A time-centered (Crank-Nicholson) difference scheme is utilized

for the temporal discretization.

2) A second-order central difference method plus a damping term are

used to manage the convection terms. The damping term could

be either fourth order, deduced from second-order upwind

differencing scheme, or second order, resulted from first-order
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3)

upwind differencing scheme. With the coefficient of the damping

term being specified explicitly, the numerical stability of the

matrix solver can be enhanced.

The diffusion, production and other source terms are discretized

with the second-order central differencing scheme to maintain the

same numerical accuracy.

The set of discretized linear equations is solved by an alternating

direction linear-relaxation method (ADI) with a simplified predictor-corrector

algorithm. In this pressure-based predictor-corrector solution procedure, an

explicit fourth-order pressure smoothing term is added to the velocity-pressure

coupled discrete equation, derived approximately from the discrete continuity

and momentum equations, to inhibit the instability in the pressure solution. For

each time step, the predictor-corrector loop will be executed iteratively until the

conservation of mass is satisfied.

4.2 Grid Generation

Although there will be a variety of flow geometries, orthogonal grids

system would be generated to avoid the ill-conditioned matrix caused by large

grid skewness. Figure 1 illustrates the grid system for a backward-facing step,
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and the meshsystem for a 30*-45° S-bend duct is exhibited in Figure 2. Grid

packing near the wall and large gradient zones may also be observed in Figures

1 and 2.
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CHAPTER V

RESULTS AND DISCUSSIONS

To evaluate the performance of the proposed turbulence model, various

curved flows are examined in the present study. According to the previous

classification of streamline curvature, numerical computations are performed on

different geometries for each type of curvature effects. The numerical

predictions and discussions are divided into 1) local curvature, 2) longitudinal

curvature, and 3) transverse curvature.

5.1 Local Curvature

A backward-facing step with separation and reattachment provides the

geometry for local flow curvature. Driver and Seegmiller [83] conducted an

experimental investigation on the incompressible turbulent flow over a

backward-facing step with an area ratio of 8:9. The grid system is shown in

Figure 1 and the detailed information about the test configuration is provided

in Figure 3. To study the effect of varying modeling constant values (Cj and

C 2) and the dependence of the cell size on the numerical predictions, two sets
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of grid systems (61 x 41 or 111 x 45) along with different values for modeling

constants (C_ = 1.5 or C_ = 1.8) are tested for the present model.

First, a comparison is made between the present model and the standard

k-e model with C_ = 1.5 and 61 x 41 grids. The improvement by the present

model is discernible from the locus of flow reversal illustrated in Figure 4. The

result shows that the flow separation from the step wall generates the effect of

convex curvature, which attenuates the eddy viscosity and actually causes the

flow to reattach further downstream. Since there is no mechanism in the

standard k-e model to simulate the curvature effect, a predicted convex shear

layer exhibits higher viscosity and early reattachment takes place. Figure 5

demonstrates better predictions by the present model on the streamwise velocity

profiles.

The more rapid change of the velocities in the recirculation zone

predicted by the standard k-e model indicates the higher energy generated by

the larger eddy viscosity. The turbulent kinetic energy profiles shown in Figure

6, indicate the reduction of the turbulent kinetic energy by the convex curvature

in the present model. However, both models underpredict the turbulent kinetic

energy when the flow is near the reattachment location. This is possibly

attributed to the effect of large-scale eddy, which becomes pronounced inside
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the recirculation zone; and the current single-time-scale model fails to capture

this phenomenon.

The prediction on the Reynolds shear stress -ph--_by the present model,

as shown in Figure 7, appearsto be reasonably accurate. The successof the

prediction of the Reynolds shearstressin the recirculation zone reveals validity

of the eddy viscosity formulation. Meanwhile, it is worth noting that the

present model costs 755 secondsof Cray X-MP CPU time (for 3122 time

iterations) to converge to an accuracy of 5 x 104, while 572 secondsof Cray

X-MP CPU time (for 2486 time iterations) are required by the standard k-e

model to converge to the sameaccuracy. It is encouraging that with all the

improvements of the numerical predictions by the present model, only three

minutes of Cray X-MP CPU time in addition are introduced. This shows the

practicality and feasibility of the current approach for the complex engineering

applications involving curvature. The velocity contours, static pressure

contours, and velocity vector plots for both the standard k-e model and the

present model are displayed in Figures 8-13.

To demonstrate the insensitivity of the modeling constant C_value on

computational results, a comparative investigation between C_= 1.5 and C_=

1.8 is performed. Figures 14-17 illustrate almost identical results of the flow

reversallocations, streamwisevelocity profiles, turbulent kinetic energy profiles,
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and Reynolds shear stress profiles between the two C_ values. The above

exercise satisfies our previous statement that the performance of the present

model is insensitive to a reasonable variation of C_ value. The remaining

computations are performed with the empirical coefficient Ct specified as 1.5.

By increasing the grid numbers from 61 x 41 to 111 x 45, a better

description of not only the changeof streamline curvature but also the discrete

flow field is expected to be achieved. From Figures 18-21, it appearsthat the

numerical calculations of the locus of flow reversal, streamwise velocity,

turbulent kinetic energy, and the Reynolds shear stressprofiles are independent

of the grid size. With the sameaccurateresults, the medium grids instead of

finer grids will be employed to save the computing time.

To achieve further verification of the proposed model with local

curvature effect, the numerical prediction on a backward-facing step with an

arearatio of 2:3, tested by Kim, Kline, and Johnston [86], is conducted and

the computational result is compared with the experimental data. The layout

of the backward-facing step is sketched as shown in Figure 22 and will be

discretized into an 85 x 51 mesh system. The improvement of the present

model, as indicated in Figure 23, is consistent with the result of the previous

backward-facing step case. It is evident that the locus of flow reversal, plotted

in Figure 23, reveals the superiority of the proposed model over the standard
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k-e model in predicting the larger recirculation zone. This is indicative of the

attenuationof the eddy viscosity causedby the effect of convex cux_,ature.The

measured reattachment length xR is 7+1 step heights; and it verifies the

prediction of the presentmodel with later reattachment. The variation of xRis

due to the inherent unsteadinessof the flow field.

Figure 24 exhibits better performanceof the present model in capturing

the streamwisevelocity profiles. The reduction of the turbulent kinetic energy

by the effect of convex curvature in the recirculation zone is substantiatedby

the agreement between experimental data and numerical predictions of the

presentmodel, which is illustrated in Figure 25. The Reynolds shearstress-uv

profiles shown in Figure 26 reveal betterpredictions of the present model. The

successful predictions of the turbulent kinetic energy and the Reynolds shear

stressby the present model indicates that the proposedformulation for the eddy

viscosity is capable of describing the characteristicsof the flow separation with

curvature effect. Figure 27 also illustrates that the proposed model can predict

the wall static pressurecoefficients better than the standard k-e model.

Although the overall predictions of the present model are reasonably

successful, there is some discrepancy between experimental results and

numerical predictions. The disagreement can be attributed not only to the

unsteadiness of the flow field but also to additional turbulence phenomena, such
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as large-scale eddy and anisotropy not accounted in our theory. Therefore, it

is suggestedthat further improvement on theproposedmodel bemade by taking

into account the physics of the large-scale eddy and anisotropy. This will be

explained further in chapter VI--"SUMMARY" of this report. The detailed

descriptions of the flow field computed by both the standardk-e andthe present

model, such as velocity contours, velocity vectors, and particle traces, are

shown in Figures 28-31.

5.2 Longitudinal Curvature

The most typical longitudinal curvature occurs in a flow through a

curved duct. An S-bend duct is a more complicated geometry because the

secondbend of the duct createsan effect opposite to that of the first bend. In

this case, if the model can not capture well the effect of curvature in the first-

bend section, the error will accumulate in the second bend and cause the

collapse of the model. A 300-45° S-bend duct with an aspect ratio of 5.6,

measuredby Butz [23], will be tested against the present model. The detailed

description of the facility and the inlet flow conditions are shown in Figure 32.

An 88 x 51 grid system is constructed, as shown in Figure 2; and the inlet

velocity and turbulent intensity profiles are prescribed.
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The comparison of static pressurecoefficients along the curved wall is

illustrated in Figure 33. It seemsthat in the first bend, both models fail on the

upper surface (concave side), but succeedon the lower surface (convex side).

In the secondbend, the present model does a better job in predicting surface

pressurethan the standardk-e model. One might question the successof the

predicted results,on the upper surface (convex side) in the secondbend by the

present model. However, as the measureddata exhibits somerandomnessand

the present model predicts the exit static pressurerelatively well, the numerical

prediction of the present model canbe considered to be reasonably successful.

The discrepancy on the upper surface in the first bend is suspectedof being

caused by the GtJrtler-like secondary flows. This occurs at the onset of the

concave curvature, where the normal velocity is numerically set equal to zero

numerically at the entranceplane. There is no experimental measurementof the

normal velocity component at the entranceplane. The error of predicted static

pressureon the upper surface (concave side) in the first bend is considered to

be the primary source of deviation of the numerical calculation from

experimental result on the samesurface (convex side) in the second bend.

The longitudinal velocity profiles at the inlet, inflection and exit planes

from the experimental results and both computational models arecompared in

Figures 34-36. The results demonstratethat the proposed turbulence model has
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a better agreementwith theexperimental data than the standard k-e model. The

slight deviations of the longitudinal velocity from the measured data at the

inflection and exit planes are attributed to the effect of the small secondary

flow. With 88 x 51 grids, the present model converges to 5 x 10 .4 in 110

seconds of Cray X-MP CPU time with 199 time iterations, while the standard

k-e model consun'es 116 seconds with 218 time iterations. It is interesting to

note that the present model has improved the numerical predictions without

increasing the computing time substantially. The contour plots of x-component

velocity, y-component velocity, and static pressure are also shown in Figures

37-39 for both the present and the standard k-e models.

The 300-45 ° S-bend duct does not demonstrate the superiority of the

proposed model over the standard k-e model very well because the surface

curvature is relatively small. The centerline radius of curvature is five times the

duct width, and hence the effect of streamline curvature does not dominate the

flow field significantly. A 2-D curved duct with small radius of curvature

(strong curvature), therefore, is required to evaluate the performance of the

present model in predicting the development of turbulence structures subjected

to strong curvature effect. A 10-by-100 centimeter, 180-degree-turn water

tunnel, with a 10 cm centerline radius of curvature, investigated by Sandborn

and Shin [87], is employed as the next test case. The configuration of the 180'
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turn-around duct (TAD) and inlet conditions are described in Figure 40. The

flow field in the 180° turn-around duct with strong curvature, especially, is of

great engineering interest due to its resemblance to the flow passage

downstream of the turbine in the fuel preburner of the Space Shuttle Main

Engine (SSME) aswell asSTOVL applications. Complex shearlayers, regions

of separation,high levels of unsteadiness,and three-dimensional structure may

occur in this type of flow field. A 141 x 41 orthogonal grid system is

constructed for this case,as shown in Figure 41.

The longitudinal velocity profiles in Figure 42 display the similarity

between the predictions of the present model and those of the standard k-e

model upstreamof the flow separation. However, the results demonstratethe

successof the present model and the collapse of the standard k-e model in

capturing the separationbubble on the inner surface (convex curvature) nearthe

180° turn. Once again, as with its failure to predict the flow in a backward-

facing step, the standardk-e model is inadequate in describing the change of

the eddy viscosity (or the length scale) attributed to the effect of streamline

curvature. The larger eddy viscosity along the inner surface predicted by the

standardk-e model preventstheoccurrenceof flow separation;whereas,smaller

eddy viscosity computed by the present model, benefiting from curvature

correction, enables the natural onsetof flow separation. The numerical results
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of the present model reveal that flow starts to separateafter 170° turn. Figure

43 provides a detailed description aboutthe longitudinal velocity distribution in

the separation bubble downstream of 180° turn. The results indicate that the

proposed implementation to the standardk-e model is necessaryand proper.

The wall static pressurecoefficient Cpis plotted as shown in Figure 44.

It is surprising that the standardk-e modelpredicts much better than the present

model even without predicting flow separation. However, the pressure

distribution calculated by the present model does show the signature of flow

separationwhere thestatic pressurerecovery along the inner surface is retarded.

That is the location where the predicted static pressurecoefficient Cp by the

present model starts to deviate from the measureddata. Hence, the relative

value of the measuredstatic pressure is doubtful. It was later discovered in

Ref. [87] that screenswere placed at the outlet of the channel, which is about

four channel widths downstream of 180° turn, to increase the flow exit

resistance such that the water completely filled the channel. However, the

screen raised the adversepressuregradientat the exit and causedthe exit static

pressure to be larger than it would have been. To support this argument,

another 180° turn-around duct will beexamined next. Some information about

the flow field such as x- and y-component velocity contours, static pressure

contour, velocity vectors, and particle tracesare shown in Figures 45-49. The
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separation bubble can beobservedclearly from theplots of the velocity vectors

and particle traces.

A further validation will be made by examining a 2-D U-duct

investigated by Monson and Seegmiiler [88]. The geometry of the coordinate

system, and the inlet conditions, are illustrated in Figure 50. The ratio of the

centerline radius of curvature to the channel width is equal to unity, while a 234

x 101 mesh system is constructed due to longer inlet and exit ducts as well as

higher Reynolds number.

The numerical results reveal that both the present and standard k-e

models predict flow separations. Nevertheless, the flow field calculated by the

present model is observed to separate earlier (ahead of 180 ° turn) and reattach

later, which is consistent with the experimental measurement. A later flow

separation (preceded by 180 ° turn) and an earlier reattachment are suggested by

the standard k-e model. This is confirmed by the comparison of longitudinal

velocity profiles as shown in Figure 51. Nevertheless, the present model seems

to under-estimate the thickness of the separation bubble. It is then found in

Ref. [88] that the thickness of the separation bubble in the Re = 106 case is

larger than that in the Re = 105 case; while most of the turbulence models,

including the present model, predict it differently. From the physical

arguments, the Reynolds number trend in experimental results seem to be doubtful.
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The distribution of wall static pressurecoefficient Cp,plotted in Figure

52, supports the previous argument. The present model has better agreement

than the standardk-e model in predicting the static pressure. Furthermore, the

signature of flow separationpresentedby the proposed model does match the

flow characteristic near the exit of 180° turn. However, both models fail to

predict the static pressureat the downstreamexit plane. It seemsthat the actual

flow separatesearlier than the presentmodel, and this causesthe presentmodel

to predict larger static pressurerecovery at the exit. It is apparent from these

comparisons that the presentmodel performs a better overall prediction, due to

the adjustment to the effect of surfacecurvature, than the standard k-e model,

especially on the convex surfaceswhere the attenuation of the eddy viscosity

plays an essential role in the occurrenceof flow separation. The contour plots

of x- and y-component velocities as well as static pressure are illustrated in

Figures 53-55, respectively. The plots of velocity vectors and particle traces,

as shown in Figures 56-57, indicate an earlier, larger flow separation by the

present model and a later, smaller flow separation by the standard k-e model.

5.3 Transverse Curvature

One representative of the class of flows with transverse curvature is the

swirling flow. There are two constraints in selecting the test cases to validate
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the proposed model with the effect of transversecurvature. First, the flow must

have small swirl number such that the characteristics of the flow is consistent

with the assumptions, i.e. weak swirl and isotropic turbulence, made in the

present model. Second, confined swirling flows in straight pipes would be

employed for the purpose of avoiding the interference from other curvature

effects such as surfacecurvature effect, and also maintaining the axisymmetry

of the flow. The numerical computations of the standardk-e and the present

models for the effect of transversecurvature will be conducted in the form of

2-D axisymmetric instead of truly three-dimensional test case.

An experimental study on a confined swirling coaxial jet in a straight

pipe with the swirl number equal to 0.21, investigated by Roback and Johnson

[89], is therefore chosen to be the test case. A 151 x 45 grid system is built up

for this flow geometry, and the schematic of the configuration along with the

inlet conditions are illustrated in Figure 58. The inlet velocity profiles and

turbulence quantities are specified at 5 mm downstream of the jet nozzle. With

such a small swirl number, a vortex breakdown occurs in this flow field

because of the combination of axial and radial pressure gradients. The radial

pressure gradient is induced by the centrifugal force, while the axial pressure

gradient is attributed to both centrifugal force of the swirling flow and the

diffusing geometry of the experimental set up, i.e. dump diffuser.
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Consequently, the comparison of the mean axial velocity along the centerline,

demonstrated in Figure 59, is one indication for the performance of both

models. Although both models fail to depict the size of the central recirculation

zone, as caused by overpredicting the eddy viscosity, the present model appears

as an improvement over the standard k-e model. The large eddy viscosity

computed by both models is suspected to be strongly related to the specification

of the length scale at the inlet boundary. The inlet length scale is not available

from the experimental results, and is assumed to be one percent of the pipe

diameter. The change of the inlet length scale is expected to greatly alter the

numerical results; but it is not the main concern in the present study.

A detailed comparison of the mean axial velocities is illustrated in Figure

60. The experimental results show some random scatter, which is partially

caused by the non-axisymmetric phenomenon. It is evident that the present

model does provide minor improvements over those by the standard k-e model,

but the improvements are insufficient to satisfy the physical characteristics of

the flow. In addition to the uncertainty of the inlet length scale, the following

reasons may be cited: 1) the additional streamline curvature caused by the

central recirculation zone affects the flow field, 2) asymmetric flow, 3)

anisotropic turbulence characteristics, and finally, the inadequacy of the current

implementation approach for swirling flows. To identify the causes for only a
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minor improvement by the presentmodel, anotherconfined swirling flow case

will be examined later on.

The meanazimuthalandradial velocity profiles, plotted in Figures 61-62,

indicate that the present model predicts better than the standardk-e model, but

the results are relatively similar. A detailed description of the flow field such

as the axial and the radial velocity contours, the velocity vectors, and the

particle traces are reported in Figures 63-66. The central recirculation zone

predicted by the present model is larger than that suggestedby the standardk-e

model, and can be clearly observed from the particle trace plot.

The next test case for the transverse curvature effect is the confined

swirling flow studied by Weske and Sturov [90]. The layout of the test

section and the specification of the inlet conditions areexhibited in Figure 67.

With the inlet velocity profiles and turbulence quantities prescribed at 3.5 cm

downstream of the swirl generator, the inlet swirl number is calculated to be

0.43 and has a distribution of solid body rotation.

The axial velocity profiles are compared in Figure 68 but with the

absenceof experimental data,becauseit is not reported in Ref [90]. As shown

in Figure 68, almost identical numerical results arepredicted by both models.

In Figure 69, the comparisonsof the circumferential velocities illustrate that the

standard k-e model predicts slightly better than the present model. This is
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contrary to the results in the previous swirling flow case. However, both

models predict faster mean flow decay of the swirling flow than the

experimental results indicate. The present implementation approach to include

the effect of transversecurvature (swirling effect) is proved to be inadequate

basedon the results of two swirling flows. It is believed that the derivation of

the eddy viscosity _t_from the equation of the Reynolds shear stress u-'_is

improper. The reasonfor the deficiency is that the other Reynolds shear stress

components, u'-ffand v"ff, areof the sameorder of magnitude as the shearstress

tensor uv in the swirling flows. Therefore, difficulty will be encountered in

choosing the Reynolds shear stress component from which the scalar eddy

viscosity would be determined. Employment of the scalareddy viscosity is not

considered to be suitable for the flow with swirling effect. Instead, a vector

eddy viscosity for each Reynolds shear stress,or calculating each Reynolds

stress tensor through algebraic equations, as derived similarly in the present

study, is recommended for this type of flow for future studies.
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CHAPTER VI

SUMMARY

6.1 Conclusions

The results of the test cases, employed to study the effects of local and

longitudinal curvatures, show the success of the proposed eddy viscosity

formulation in improving the numerical prediction capability of the standard k-e

model consistently. Moreover, the present model offers the following

advantages, namely 1) generality--same formulation for the eddy viscosity in

both Cartesian and Streamline coordinates, 2) convenience--the formulation for

the eddy viscosity is easy to be adopted into various one- and two-equation

models, 3) efficiency--the required computer CPU time by the present model

is nearly the same as the standard k-e model.

In the backward-facing step flows, the present model is indeed capable

of dictating the effect of local curvature rendered by flow separation and hence

capturing the attenuation of the eddy viscosity. The present model, however,

still underpredicts the reattachment point. This problem is attributable to the

effects of large-scale eddy and anisotropy in the recirculation zone, especially
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the latter one. The flow inside therecirculation zone is basically dominated by

a large-scaleeddy with low Reynolds number. This is adeficiency of the high-

Reynolds-number k-e model used in this study. It is also known that the

anisotropic effect becomesdominant asthe flow approachesthe wall, thus the

effect plays an important role near the reattachmentregion. Consequently, the

proposed model could besignificantly improved with the consideration of these

two effects.

In the curved-duct flows, the present model demonstrates a good

agreementwith the measureddata. The major successof the present model is

to predict the flow separationin curved ducts by accounting for the effect of

wall curvature. With the absenceof the curvature effect, the standard k-e

model appearsto predict the flow without separation or with later and smaller

separationzone. However, the discrepancy between the measureddata and the

numerical results takes place when the present model estimates the size of

separation bubbles. As discussedin chapter five, the experimental results are

believed to bequestionable. Hence,a more detailed and reliable experiment for

the 180-degreeturn-around duct is required to further validate the presentmodel

in predicting the size and location of the separationbubble.

For the flows with swirling effect, the present model does not improve

the numerical predictions consistently. In spite of depicting the size of vortex
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breakdown in the confined swirling coaxial jets better than the standard k-e

model, the present model overpredicts the eddy viscosity and results in faster

decay of the circumferential velocity in the confined swirling pipe flow. The

current approach to include the effect of transverse curvature, deducing the

scalar eddy viscosity from the equation of the Reynolds shear stress_', is thus

considered to be improper for the flows subjected to swirling effect. With the

dominance of the anisotropic effect in the swirling flows, each Reynolds shear

stress term can be of the same order of magnitude and should have its
t

corresponding eddy viscosity formulation, respectively. Therefore, the effect

of transverse curvature should be accounted for either by employing a vector

form of the eddy viscosity or by solving for each Reynolds stresses directly

through approximated algebraic equations. Although, the numerical predictions

of the swirling flows by the present model show deficiencies, a qualitative

improvement is accomplished, which reveals that the extra rate of strain should

be included to account for the effect of transverse curvature. The

implementation of transverse curvature is expected to be more complicated than

those for the local and longitudinal curvatures due to turbulence anisotropy.

The present model demonstrates improvements to the prediction

capability of turbulent flows dominated by local and longitudinal curvatures

over the standard k-e model. The effect of transverse curvature, as in swirling
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flows, requires more elaborateformulation of the eddy viscosity and should be

included in future work.

6.2 Recommendations for Future Work

1) The present model demonstrates good predictions in the backward-facing

step cases, where the effect of local curvature prevails. It is

recommended that the anisotropic effect be included, hence the

reattachment length can be predicted more precisely.

2) A more extensive experimentation on the 180-degree turn-around duct

is required to evaluate the performance of the present model in

predicting the separation bubble rendered by the effect of wall curvature

(longitudinal curvature).

3) A vector form of the eddy viscosity or solving the algebraic Reynolds

stress equations should be employed

transverse curvature (swirling flows).

to account for the effect of

The effect of strong anisotropy

will result in the breakdown of the algebraic eddy viscosity approach.

The adoption of the extra rate of strain induced by the curvature effect

should still be valid, but each components of the vector eddy viscosity

should be attained from corresponding Reynolds stresses.
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(a) present model

(b) standard k-e model

Figure 8 Streamwise Velocity Contour in a Backward-Facing Step Flow

(61 x 41 grids)
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(b) standard k-e model

Figure 9 Streamwise Velocity Contour near the Backward-Facing Step

(close view)
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(a) present model

(b) standard k-e model

Figure 10 Transverse Velocity Contour in a Backward-Facing Step Flow (61

x 41 grids)
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(a) present model

(b) standard k-e model

Figure 11 Transverse Velocity Contour near the Backward-Facing Step

(close view)
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(a) present model

(b) standardk-e model

Figure 12 Static PressureContour in a Backward-Facing StepFlow (61 x 41
grids)
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(a) present model

(b) standard k-e model

Figure 13 Velocity Vectors in a Backward-Facing Step Flow (61 x 41 grids)
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(a) present model

(b) standard k-e model

Figure 31 Particle Traces in a Backward-Facing Step Flow (close view)
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Aspect ratio = 5.6

Figure 32 A 300-45 ° S-Bend Duct Geometry and Inlet Conditions by L.A.

Butz [23]
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0 : Upper Surfoce [ 23 ], [] : Lower Surfoce [ 23 ]
: Stondord
: Present

W (inlet width) = 4 in, Re w = 131200
Rc = 5W, Aspect Ratio = 5.6
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Figure 33 Static Pressure Coefficient Distribution for a 300-45 ° S-Bend Duct

(88 x 51 grids)
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Figure 34

o Data : L. A. Butz [ 23 ]
: Standard
: Present

W (inlet width) = 4 in,

Re = 5W,

Re w = 131200
Aspect Ratio = 5.6

Longitudinal Velocity Profile at the Entrance Plane of a 300-45 °

S-Bend Duct (88 x 51 grids)
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0 Data : L. A. Butz [ 23 ]

: Standard

: Present
W (inlet width) = 4 in,
R c = 5W,

Re w = 131200
Aspect Ratio -- 5.6

"i _ _ "__''' '- _

Figure 35 Longitudinal Velocity Profile at the Inflection Plane of a 300-45 °

S-Bend Duct (88 x 51 grids)
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Figure 36

O Data • L. A. Butz [ 23 ]
• Standard
: Present

W (inlet width) = 4 in, Re w = 131200
Rc = 5W, Aspect Ratio = 5.6
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Longitudinal Velocity Profile at the Exit Plane of a 300-45 ° S-

Bend Duct (88 x 51 grids)
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(a) present model

(b) standard k-e model

Figure 37 X-Component Velocity Contour in a 300-45 ° S-Duct (88 x 51

grids)
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(a) present model

(b) standard k-e model

Figure 38 Y-Component Velocity Contour in a300-45° S-Duct (88 x 51 grids)
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(a) present model

(b) standard k-e model

Figure 39 Static Pressure Contour in a 300-45̀' S-Duct (88 x 51 grids)
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Figure 40 The Geometrical Sketch and Inlet Conditions for a 180 ° Turn-

Around Duct by Sandborn and Shin [87]
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Figure 41 Grid System for a Two-Dimensional 180° Turn-Around Duct
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0 : Inner Surface [ 87 ],
: Standard
: Present

W (inlet width) = 10 cm,

R= = lW,
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[] : Outer Surface [ 87 ]
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Figure 44 Wall Static Pressure Coefficient Distribution in a 180 ° Turn-

Around Duct [87]
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(a) present model

(b) standard k-e model

Figure 53 X-Component Velocity Contour in a 2-D U-Duct [88]
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(b) standard k-e model

Figure 54 Y-Component Velocity Contour in a 2-D U-Duct [88]
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(a) present model

(b) standard k-e model

Figure 55 Static Pressure Contour in a 2-D U-Duct [88]
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(b) standard k-e model

Figure 56 Velocity Vectors in a 2-D U-Duct [88]
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(a) present model

(b) standard k-e model

Figure 57 Particle Traces in a 2-D U-Duct [88]

147



E
E

II

148

II II ";_

II II

o,_.4

o_--,

O

c-
O

0 _,,..,_

o_.C

0

J

o_

0
0

0
o_

0

0

o._

IT.,



o

(/)

E

0

1.0

0.5

0,0

-0.5

D,

4

:1
I

!

0

(3 : Data by Roback & Johnson [ 89 ],
: Standard
: Present

S (swirl no.) = 0.21, Re D = 8188
R = 61 mm

' I I I ' I I 1 ' I J I I I

/ °/ (3 (3

(3
QQQ

I i I , I ,, I , I l I , I ,
50 100 150 200 250 300 350

Axial Distance (mm)

Q

,,i
400 450

Figure 59 Mean Axial Velocity along the Centerline in a Confined Swirling

Jet (151 x 45 grids)

149



o

v-.

d

o

o "E:

jo•_ ,:5 d d (5 N _r

%0 -I "-'-U _
E _ _ __ o._ ._

0 OO xx " "_

"o U .- x - ._

x Q o o_

"" -'l(:?_l I I I I I I I I I I x;I I 'v_l t _1 _ ,--'_l- _ "_

"" I
o _. _ ,e _ o

• ° ° 0

,.. i I I I I I I I I I I I I i I I i I iu.) .,_

I 0
L_

I _

E q _
I E N

0
. O_l d "g I.

o_ II o ::;,.,

x d ._
_J
0

03

E
0

E

0
--_

E

__ E
u E
o

0

x

0

0 _. _ _ _ 0
•- o d 6 d

o _lJ

i >
o ,_

m E

o

un _
0 °_

150



1,0

E
II E A

C

_ X

G-
IIII

o _

o.
e-

lw, ,, Iii , , I , I , Jl , _ , ,

o d d o
o

E

lt_

o
"o II
c
o x

O0

0

o "_ " -_-_-- -- T_I -- _'_ i

o.

I 1 I 1 I I I 1 I i I I I I I I J I I I I 1 I I

o d d d

E .0
E o oo _,eo o_I_

N
- IJU -

, ,,,11, , i I, t , , I ,, , ,I, , , ,

-- o d o d

o

0

J

ODOQ O) OO[_ o

t I I 1 I I l _ _ I _ , _ t I 1 I I I I I I I I

0 d 0 0 0

151

o

E

d
I

o

E

o _

if)

d
I

0 @

_ E

d_

q =

_ 0
_ L)

0

d _

o
I



-o II

o_ II
CO x

,,_ i I I I I l I i i J i I I ! I I,I I I I i i I i
0

0

"7
o "V' .._
d _ "l_

em

t_

0
q

o

i i i i J ! I i I ! i I I i I I I i i I i I i i 6
I

_0 _li ',i- c',,I o
d d cl o o

152



q

o

-o II
E

X
.a.a

in

O
m

0_. Q C) 0 Q 0

II

x

.1 .I

o.

o

'q. u
o

E

dN

o

o
d

153

o_

d
I

o "0

0_.-_

0
'q u r.j
o

E ,.-,
0 _'_ _

d_ E

o_

d
I



_ >
u C_

o
o d o d

0

o
oo d d d

154



E
II E

E

_ X

O.

E
E

tr)
0

0

E
0 X

I

i

I E
I E

I',")
0

o_ II
x

E
0
131
E

0

"o

*" E
o E

o if)

0

.4

x

o

o

o

q

q

q

t I I I I t I 1 I 1 I ,I t t I t I t t I i t t t

o d d o

d

o

@9
o_
o E

-- v

- >

¢)
d
I

o
¢)

d

u
11)

o_
o E

v

- >

d
I

0
¢)

d

i I I , I i , n i I l t I , I t i I i I J , _ l

o d d o

-'oCt.

I I I I 1 t I I I I I I 1 I I I I ! t I t I I t

o d o o

u

q_
o E

v

, l l J I i t i , I t , I , I , I I I I I I I t

o o o d

155

>

d
o _

d =
°_,,_

0

r_
,o
_D

I

_ .__

5o
I

q



(a) present model

ii

(b) standard k-e model

Figure 63 Axial Velocity Contours in a Confined Swirling Jet [89]
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(a) present model

(b) standardk-e model

Figure 64 Radial Velocity Contours in a Confined Swirling Jet [89]
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(a) present model

(b) standard k-e model

Figure 65 Velocity Vectors in a Confined Swirling Jet [89]
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O

(a) present model

(b) standard k-e model

Figure 66 Particles Traces in a Confined Swirling Jet [89]
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APPENDIX A

TABLES FOR REVIEW OF LITERATURE
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APPENDIX B

DERIVATION OF NEW FORMULATION FOR EDDY VISCOSITY IN

CARTESIAN COORDINATES

The algebraic equation for the Reynolds stress UiU'----_.in equation (3.17) is

uiuj - ¢[ P_j-2_5"P]k e "3" 'J _ +'3"25ij (B.1)

where P_j is the production rate of the Reynolds stress given by

[_ _Uj _ _U i ]
Pij = - UiUk_ +ujH k

3X k 3X k

and P, is the production rate of the turbulent kinetic energy given by

(B.2)

_Ui (B.3)
P, = - UiUk

For two-dimensional Cartesian (x,y) coordinates, the streamline direction

(x) will be in accordance with the indices i, j and k equal to 1, while the indices

i, j and k=2 represent the transverse direction (y). Therefore, the above

equations can be written as
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21 3 r 3

(B.4)

_2p] 2P22 +-
e 3 r 3

(B.5)

U'-'_" _ I_ P12
k e

(B.6)

P_' =-2[ u--uoU_ox+uv--3U]-_y

(B.7)

I_3V +_3V ]P22 = -2 uV-_x "_y

(B.8)

P,2 - u-'TOV _3V +uv
(B.9)

[u_ ou - au - _v _v 1
L= l_ 0x u,,.-_-y uv-b-Tx+V_-- + + W ]

(B.10)

Following Bradshaw's observation [30]-[31], only the terms associated with

3U/3y and 3V/3x will be kept, and hence

P,, = -2_"q_-y (B.11)
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P22= -2h-F__OV (B.12)
Ox

(B.13)

h-F[ @U OV ]
P,=

J
(B.14)

According to Bradshaw's analogy, the flux Richardson number Re is the

negative ratio of the turbulent kinetic energy production in the transverse

direction to that in the streamwise direction, i.e.

- P22 ( -2h-vOV/@x ) - @V/@x
Rf .... (B.15)

Pl_ ( -2hFOU//)y ) bU/_y

Combining equation (B.15) with equation (B.14), it yields

@U 1
- uv A = P (B.16)

o3y ' 1 - R t

_V Rr
-uv-- = -P (B.17)

Ox ' 1 - R_

Substituting equation (B.16) into equation (B.11) and equation (B.17) into

equation (B.12) will give

From equations (B.4) and (B.18) as well as equations (B.5) and (B.19), it can
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1
Pll = 2P _ (B.18)

r l-Rf

P22 = -2P Rf (B.19)
' 1-Rf

be shown that

2I P_ 2+Rf+ ] (B.20)

Equation (B.13) also can be rewritten as

(B.22)

A new form for the equation of P12 can be obtained with the help of equation

(B.20) and (B.21)

p_2 = k_gU 2[ P, R_+4Rf +1 ]-g_-yS _,--_ y_-_ -1 ÷R,
(B.23)

According to equation (B.6), the algebraic equation for the Reynolds shear

stress can then be obtained by incorporating with equation (B.23) as
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k 2 c3U 2 I P, RfZ+4Rr +1

-_" - "_ "_Y 3"_) L1 -Rr-_)'_" ] -_

(B.24)
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APPENDIX C

DERIVATION OF NEW FORMULATION FOR EDDY VISCOSITY IN

STREAMLINE COORDINATES

Following Rodi's [61] step, the algebraic equation for the Reynolds stress

uiuj is obtained as

UiUj - _[Pij-2_"Prl+2_k e 3 'J 3 'J (C.1)

where Pij, the production rate of the Reynolds stress is

[_ _Uj _ _UiP.. = - u iu k __ + uj u k-
'J O_Xk c3Xk

(C.2)

and Pr, the production rate of the turbulent kinetic energy is

-- °aUi (C.3)

P = -u iukC)Xk

With the selection of a two-dimensional streamline (s,n) coordinates, the

streamwise direction (s) will be aligned with the indices i, j and k equal 1,

while the indices i, j and k equal to 2 represent the normal direction (n).

Therefore, the above equations can be expressed as
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I _ pj2u-z _ p__ +_
k e 3 ' 3

(c.4)

2_ P22 +-
k e 3 ' 3

(c.5)

uv _ (D Pt2
k e

(C.6)

(/ EIPI1 _2u--'7 0U V -2 1 + +
g_ +R- g-aft- R

(c.7)

: (P22 -2_'4" ..-3-7.-2._-0V U - 2v--7 1 + -_-
(c.8)

-2 U -v-_ 1+ - +
R R On R R

(C.9)

p v) / n) Vm+__ -7 7 I+--
Os R R

-uv 1+-- +_---
R _ Os R

(C.lO)

where R is the radius of surface curvature and n is the normal distance away

from the wall.

Since the dominant extra rate of strain is U/R, only those term coupled

with U/R and the main strain OU/On will be remained, and hence
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[( B)0UU1P,l = -2u"v 1 +-- +__R _ R
(c.11)

P22 = 4u'-v U (C.12)
R

PI2 2u--7 U _ v-_ 1 + +
-ff _ Tn "¢

(C.13)

[( n)3U U] (C.14)P,=-_" 1+._. -_-n -'R"

According to Bradshaw's analogy [30]-[31], the flux Richardson number Rf is

the negative ratio of turbulent energy in the normal direction to that in the shear

direction, i.e.

Rf -

-4_'q U
- P22 R

Pll -2E-_ 1 +__ +
R _ R

2£
R

R R

Combining equations (C.14) and (C.15) will yield

(C.15)

-u-v" 1+-- _+_ =P

R 3n R ' 1 - Rf
(C.16)
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Rf_2fiV U = p (C.17)

R ' 1 -R e

The above equations show that equations (C.11) and (C.12) can be expressed

as

Pll = 2P _1 (C.18)
1 - Rf

Rf
- -2P (C.19)P22

• 1-Rf

Substituting equation (C.18) into equation (C.4) and equation (C.19) into

equation (C.5) will obtain

Since the equation (C.13) can be rewritten as

P,2 = 1 +_. _nn + R (R'u-:-v-_)
(C.22)

a new expression for Px2 can be deduced with the aid of equations (C.20) and

(C.21), which is
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II n IOU UI[ P R_+4Rf+IPt2 = k23 1 +--_+--R On R _--e 1 _-f -l+Rf

(c.23)

By putting equation (C.23) into equation (C.6), an algebraic equation for the

Reynolds shear stress can be resolved as

m

- HV -
e 3 R -'_-n +-R

P Rf2+4Rf+ 1
1 - Rf - _) .-.[r

e 1 - R r

(C.24)

The Boussinesq's eddy-viscosity reveals that

-P_'_= gt 1+._- -_--n +_-
(C.25)

so that we can obtain eddy viscosity l.tt as

k z 2d_V P, R_+4Rr+I

i.tt = p _ _T [l_Rf_c V i--g,
(C.26)

C5



APPENDIX D

DERIVATION OF NEW FORMULATION FOR EDDY VISCOSITY

WITH TRANSVERSE CURVATURE EFFECT

With the adoption of the cylindrical coordinates, the coordinate axis,

mean and fluctuating velocity components can be expressed in the tensor

notation as X i = [x, r, 0], Ui = [U, V, W], and ui = [u, v, w]. According to Ref.

[84] and Ref. [85], the transport equations of Reynolds stresses u_u---_and

turbulent kinetic energy k can be expressed as follows:

Uk 0U_ _ _2_-_k _U + ps a + D,,- 811 (D.1)
3X k 3X K

Win= _2(_fl-_k 3V W_) _ (D.2)
U k_3v-7-2mvw _-mvw +Ps22+D22 c22

3X k r 3X k r

3w--_ +2 9"-_=-2 _-d'_k_ rG Ps33 + D33 - e33
(D.3)
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:

w _ _/v__ au _ av w _ J!
- _UW = - + UU k _ - _UW

r _ _X K r

+ Ps12 + D12 - e12

(D.4)

+ ---- -- + -- _ UW
Uk_-_k "7- -_k _'_k_ r

+ PsI3 + D13 - e 13

(D.5)

0wV Ww jUk b-X_k +"7" _ + _ _ r (D.6)

+ Ps23 + D23 - e23

Uk Okc_X'_ = - U---i_k-_'kI _Ui - Wv"w + V w--"2"1 +Pk+Dk- gr r (D.7)

where subscripts i and k are the tensor indices, 3X k = [/)x, Or, r30], and Psij, Dij,

and eij are the pressure-strain, diffusion, and dissipation of Reynolds stresses,

respectively; while Pk, Dk, and e are the pressure-strain, diffusion, and

dissipation of the turbulent kinetic energy.

Therefore the production terms of Reynolds stresses and turbulent kinetic

energy can be written as
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P22 --p
cr

- _+VW
_x + v-'/ _r ra0__2W)]__r(D.9)

P33 = Poe = -2[h_aW mOW 3W_+VW +W_/

L 3x 3r ra0

W --.,/
m+_w

r w_]+ --VW

r

(D.10)

PI2 = Pxr
-- 3U 3U 3U 3V

3x 3r ra0 3x

-- 3V -- 3V w
- uv m - uw _ + 2h--ff'm

3r ra0 r

(D.11)

, +;w1
v1-aT+ r--_+r -vw a-T

(D.12)

W/w ( vwl_ wP=3 = P,o = -77 _+"7" r-_'-2-'7" -uv'-_'x

-- av_v_['av aw v']
- uw aT _,-_r + ra---0 + r )

(D.13)

P
r v)_ louaT 3--7 r30 + -7" --_

rag + _ _--aT÷ a-T-T

/4-
ax

(D.14)

with the assumption of weak swirl, axisymmetric and slender shear layer, which

means W/r < aW/ar, alaO = o, and a/ar > alax, equations (D.8)-(D.14) can be

simplified as
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P_ = P -- -2_'_3U (D.15)
xl 631.

Pz_ = P,, = 4_'_ _W (D.16)
r

P33 = Poo = -2_'ff _3W _ 2v-ff _W (D.17)
_r r

P_2 = P = -v-'__3U (D.18)
x, 3r

3U (D. 19)
P13 = P,,o = - vw _--7

P_ = P,6 = -v-__3W (D.20)
_r

3U m3W --W (D.21)P = -uv---vw_+vwm
' 3r 3r r

The flux Richardson number Rf of three-dimensional flows is defined by

Bradshaw [30] as

extra v-'7 production

sum of _ and

2V_ W
r

w-7 production

3U -- 3W _ W
UV _ + VW _ + VW

Or 3r r

- P22

PI _ + P33

(D.22)
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From equations (D.21) and (D.22), the production of turbulent kinetic energy

can be derived as

P = -2_-_W 1-Rf (D.23)
' r Rr

and so a new expression for P22 can be obtained as

Rf

P22 = - 2 P (D.24)
' 1-Rf

According to equation (3.17), which is

U_j _ Pij - _ij Pr + ij- 5 3
m

an expression for the shear stresses u--qand v 2 can be denoted as

(D.25)

uv _ ¢ P12 (D.26)
k e

2 ] 2 (D.27)
v-_ - ¢ P22--- p +--
k e 3 ' 3

Substituting equations (D.23) and (D.24) into equation (D.27) will yield

P 1 +2Rf)
2k 1-¢ (D.28)

With the aid of equation (D.28), equation (D.18) can be rewritten as

D5



I P 1 +2Rf JOU2k 1-_ - -l_._r _rrPl2 " - _" e

(D.29)

Therefore, the Reynolds shear stress u-'-_can be obtained from equations (D.26)

and (D.29), which is

IIV = -
e 3

1-¢
P 1 +2R r 0U

e 1 - R¢ 3r

(D.30)

and also the eddy viscosity could be shown as

P 1 +2Rf]
(D.31)

The final step is to further simplify the expression of the flux Richardson

number Rf. Due to the assumption of weak swirl, i.e. W/r ¢ OW/3r, equation

(D.22) becomes

2_-'ff W

r (D.32)
R_ = _3U _ 3W

UV_ + VW

Or Or

From equation (D.25), it can be seen that

U'-V" P12
- (D.33)

V-"W P23
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Substituting equations(D. 18)and (D.20) into theabove equation will evolve the

following expression

u-'__ 3U/3r (D.34)

v'ff 3W / o%"

Hence, the flux Richardson number R r can be derived from equations

(D.32) and (D.34), which is

Rf

2__w a__Ew
= r 3r (D.35)
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